A fast partitioning algorithm using adaptive Mahalanobis clustering with application to seismic zoning
نویسندگان
چکیده
In this paper we construct an efficient adaptive Mahalanobis k-means algorithm. In addition, we propose a new efficient algorithm to search for a globally optimal partition obtained by using the adoptive Mahalanobis distance-like function. The algorithm is a generalization of the previously proposed incremental algorithm [36]. It successively finds optimal partitions with k = 2, 3, . . . clusters. Therefore, it can also be used for the estimation of the most appropriate number of clusters in a partition by using various validity indexes. The algorithm has been applied to the seismic catalogues of Croatia and the Iberian Peninsula. Both regions are characterized by a moderate seismic activity. One of the main advantages of the algorithm is its ability to discover not only circular but also elliptical shapes, whose geometry fits the faults better. Three seismogenic zonings are proposed for Croatia and two for the Iberian Peninsula and adjacent areas, according to the clusters discovered by the algorithm.
منابع مشابه
Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملA Comparative Study between a Pseudo-Forward Equation (PFE) and Intelligence Methods for the Characterization of the North Sea Reservoir
This paper presents a comparative study between three versions of adaptive neuro-fuzzy inference system (ANFIS) algorithms and a pseudo-forward equation (PFE) to characterize the North Sea reservoir (F3 block) based on seismic data. According to the statistical studies, four attributes (energy, envelope, spectral decomposition and similarity) are known to be useful as fundamental attributes in ...
متن کاملAn Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks
LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...
متن کاملPrediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods
Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...
متن کاملA New Fuzzy Noise-Rejection Data Partitioning Algorithm with Revised Mahalanobis Distance
Fuzzy C-Means (FCM) and hard clustering are the most common tools for data partitioning. However, the presence of noisy observations in the data may cause generation of completely unreliable partitions from these clustering algorithms. Also, application of the Euclidean distance in FCM only produces spherical clusters. In this paper, a new noise-rejection clustering algorithm based on Mahalanob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Geosciences
دوره 73 شماره
صفحات -
تاریخ انتشار 2014